Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The set Q consists of the following terms:
and2(false, false)
and2(true, false)
and2(false, true)
and2(true, true)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x3))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x2, x3))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
Q DP problem:
The TRS P consists of the following rules:
EQ2(var1(L), var1(Lp)) -> EQ2(L, Lp)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, T)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(T, Tp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> AND2(eq2(T, Tp), eq2(S, Sp))
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
REN3(var1(L), var1(K), var1(Lp)) -> EQ2(L, Lp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> AND2(eq2(T, Tp), eq2(X, Xp))
EQ2(cons2(T, L), cons2(Tp, Lp)) -> AND2(eq2(T, Tp), eq2(L, Lp))
REN3(X, Y, lambda2(Z, T)) -> REN3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T))
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(S, Sp)
REN3(var1(L), var1(K), var1(Lp)) -> IF3(eq2(L, Lp), var1(K), var1(Lp))
REN3(X, Y, lambda2(Z, T)) -> REN3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, S)
The TRS R consists of the following rules:
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The set Q consists of the following terms:
and2(false, false)
and2(true, false)
and2(false, true)
and2(true, true)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x3))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x2, x3))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
EQ2(var1(L), var1(Lp)) -> EQ2(L, Lp)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, T)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(T, Tp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> AND2(eq2(T, Tp), eq2(S, Sp))
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
REN3(var1(L), var1(K), var1(Lp)) -> EQ2(L, Lp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> AND2(eq2(T, Tp), eq2(X, Xp))
EQ2(cons2(T, L), cons2(Tp, Lp)) -> AND2(eq2(T, Tp), eq2(L, Lp))
REN3(X, Y, lambda2(Z, T)) -> REN3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T))
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(S, Sp)
REN3(var1(L), var1(K), var1(Lp)) -> IF3(eq2(L, Lp), var1(K), var1(Lp))
REN3(X, Y, lambda2(Z, T)) -> REN3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, S)
The TRS R consists of the following rules:
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The set Q consists of the following terms:
and2(false, false)
and2(true, false)
and2(false, true)
and2(true, true)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x3))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x2, x3))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 5 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
EQ2(var1(L), var1(Lp)) -> EQ2(L, Lp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(T, Tp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(S, Sp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
The TRS R consists of the following rules:
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The set Q consists of the following terms:
and2(false, false)
and2(true, false)
and2(false, true)
and2(true, true)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x3))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x2, x3))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(T, Tp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(X, Xp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(L, Lp)
EQ2(lambda2(X, T), lambda2(Xp, Tp)) -> EQ2(T, Tp)
EQ2(apply2(T, S), apply2(Tp, Sp)) -> EQ2(S, Sp)
EQ2(cons2(T, L), cons2(Tp, Lp)) -> EQ2(T, Tp)
Used argument filtering: EQ2(x1, x2) = x2
var1(x1) = x1
apply2(x1, x2) = apply2(x1, x2)
lambda2(x1, x2) = lambda2(x1, x2)
cons2(x1, x2) = cons2(x1, x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
EQ2(var1(L), var1(Lp)) -> EQ2(L, Lp)
The TRS R consists of the following rules:
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The set Q consists of the following terms:
and2(false, false)
and2(true, false)
and2(false, true)
and2(true, true)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x3))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x2, x3))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
EQ2(var1(L), var1(Lp)) -> EQ2(L, Lp)
Used argument filtering: EQ2(x1, x2) = x2
var1(x1) = var1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The set Q consists of the following terms:
and2(false, false)
and2(true, false)
and2(false, true)
and2(true, true)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x3))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x2, x3))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, T)
REN3(X, Y, lambda2(Z, T)) -> REN3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T))
REN3(X, Y, lambda2(Z, T)) -> REN3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, S)
The TRS R consists of the following rules:
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The set Q consists of the following terms:
and2(false, false)
and2(true, false)
and2(false, true)
and2(true, true)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x3))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x2, x3))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, T)
REN3(X, Y, apply2(T, S)) -> REN3(X, Y, S)
Used argument filtering: REN3(x1, x2, x3) = x3
apply2(x1, x2) = apply2(x1, x2)
lambda2(x1, x2) = x2
ren3(x1, x2, x3) = x3
var1(x1) = var
if3(x1, x2, x3) = if
Used ordering: Quasi Precedence:
[var, if]
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
REN3(X, Y, lambda2(Z, T)) -> REN3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T))
REN3(X, Y, lambda2(Z, T)) -> REN3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)
The TRS R consists of the following rules:
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The set Q consists of the following terms:
and2(false, false)
and2(true, false)
and2(false, true)
and2(true, true)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x3))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x2, x3))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
REN3(X, Y, lambda2(Z, T)) -> REN3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T))
REN3(X, Y, lambda2(Z, T)) -> REN3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)
Used argument filtering: REN3(x1, x2, x3) = x3
lambda2(x1, x2) = lambda1(x2)
ren3(x1, x2, x3) = x3
var1(x1) = var
if3(x1, x2, x3) = if
apply2(x1, x2) = apply
Used ordering: Quasi Precedence:
[var, if]
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
and2(false, false) -> false
and2(true, false) -> false
and2(false, true) -> false
and2(true, true) -> true
eq2(nil, nil) -> true
eq2(cons2(T, L), nil) -> false
eq2(nil, cons2(T, L)) -> false
eq2(cons2(T, L), cons2(Tp, Lp)) -> and2(eq2(T, Tp), eq2(L, Lp))
eq2(var1(L), var1(Lp)) -> eq2(L, Lp)
eq2(var1(L), apply2(T, S)) -> false
eq2(var1(L), lambda2(X, T)) -> false
eq2(apply2(T, S), var1(L)) -> false
eq2(apply2(T, S), apply2(Tp, Sp)) -> and2(eq2(T, Tp), eq2(S, Sp))
eq2(apply2(T, S), lambda2(X, Tp)) -> false
eq2(lambda2(X, T), var1(L)) -> false
eq2(lambda2(X, T), apply2(Tp, Sp)) -> false
eq2(lambda2(X, T), lambda2(Xp, Tp)) -> and2(eq2(T, Tp), eq2(X, Xp))
if3(true, var1(K), var1(L)) -> var1(K)
if3(false, var1(K), var1(L)) -> var1(L)
ren3(var1(L), var1(K), var1(Lp)) -> if3(eq2(L, Lp), var1(K), var1(Lp))
ren3(X, Y, apply2(T, S)) -> apply2(ren3(X, Y, T), ren3(X, Y, S))
ren3(X, Y, lambda2(Z, T)) -> lambda2(var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), ren3(X, Y, ren3(Z, var1(cons2(X, cons2(Y, cons2(lambda2(Z, T), nil)))), T)))
The set Q consists of the following terms:
and2(false, false)
and2(true, false)
and2(false, true)
and2(true, true)
eq2(nil, nil)
eq2(cons2(x0, x1), nil)
eq2(nil, cons2(x0, x1))
eq2(cons2(x0, x1), cons2(x2, x3))
eq2(var1(x0), var1(x1))
eq2(var1(x0), apply2(x1, x2))
eq2(var1(x0), lambda2(x1, x2))
eq2(apply2(x0, x1), var1(x2))
eq2(apply2(x0, x1), apply2(x2, x3))
eq2(apply2(x0, x1), lambda2(x2, x3))
eq2(lambda2(x0, x1), var1(x2))
eq2(lambda2(x0, x1), apply2(x2, x3))
eq2(lambda2(x0, x1), lambda2(x2, x3))
if3(true, var1(x0), var1(x1))
if3(false, var1(x0), var1(x1))
ren3(var1(x0), var1(x1), var1(x2))
ren3(x0, x1, apply2(x2, x3))
ren3(x0, x1, lambda2(x2, x3))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.